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Abstract

The present work presents a flexibility-based continuum damage identification approach. Here, it is
considered that the current integrity state of a structure is described by means of a continuum damage
model. This model enables one to parameterize the stiffness matrix of the finite element ðFEÞ model of the
system, such that, in an updating process, properties such as symmetry and sparsity of the original FE

model are naturally preserved. The damage identification is accomplished by minimizing the Frobenius
norm of the difference between the experimental and analytical flexibility matrix only related to the
measured degrees of freedom ðDOF Þ of the structure. By utilizing an error only related to the measured
DOF one avoids the need for model expansion or model reduction, difficulties commonly present in the
model updating process. The modal information required for the experimental flexibility matrix calculation
are obtained by means of Eigensystem Realization Algorithm ðERAÞ and common-based structure
identification ðCBSI Þ: The assessment of the present approach has been performed by means of simulations
on a beam-like structure considering typical shortcomings occurring in real applications such as small
number of sensors, different levels of signal to noise ratio and limited spectral information. It has also been
analyzed the use of a regularization term in the error function to be minimized, in order to improve the
performance of the proposed method.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture of components, recognized as a major failure mechanism in structural systems, occurs
through three sequential stages: crack initiation, crack growth and final fracture. In the first one,
microstructural damage is accumulated leading to a macroscopic crack. The second stage consists
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on a stable growth of this crack contrasting with the third part of the process which often exhibits
a dramatic dynamical growth of the failure.

This works as a motivation for the development of very elaborated modelling in order to
provide the needed basis for designing safe structural systems. Traditionally, one of the first two
stages of the damage process is the focus of the design. On the other hand, there is a new trend,
often referred to as damage tolerant approach, which assumes that existence of defects or micro
and macro cracks is unavoidable and uses an initial damage scenario to predict the residual life of
the system. In both cases, damage identification can play a crucial role. In the most traditional
approach, a conciliation between tests, involving laboratories results or in situ data, and the
model’s response is required in order to achieve reliability. The second approach is to built on the
knowledge of the initial damage distribution.

Even when it is not directly connected to design or forecasting, damage identification is a very
effective engineering tool as it provides information for maintenance and repairing.

It seems to be widely accepted that damage diagnoses can accomplish four different levels
ordered by their complexity, namely: Level 1—detection of damage existence in the structure;
Level 2—Level 1 plus determination of damage localization; Level 3—Level 2 plus evaluation of
damage intensity; and Level 4—Level 3 plus estimation of the residual life of the structure.

The technological and scientific challenges posed by the different levels above have led to a
myriad of approaches aiming at damage identification. Those approaches, encompassing
deterministic or statistical perspectives, use different types of data (modal, time series, frequency
responses), several forms of excitations and experimental set-ups and distinct mathematical
formulations and numerical algorithms. Most prior work on structure damage detection is
focused on the general framework of finite element ðFEÞ model updating methods. These methods
are intended to identify structural damage through determining changes in the physical properties
that minimize an error function regarding an undamaged finite element model and experimental
data. Very often they rely on the damaged structure’s modal parameters (frequencies, mode-
shapes and modal damping) exploiting that they are functions of the structural properties (mass,
stiffness and damping). Therefore, changes in the physical properties due to damage will be
reflected in the modal ones, which can be measured by standard tests and used to infer damage.
The technical literature concerning damage identification is very extensive [1–8], and [9] to cite
only a few. It is worth mentioning that modern non-destructive damage identification techniques
are not completely qualified which implies that they have not been so far fully accepted by the
industry and regulatory agencies as practicable methods. This motivates further investigations
and improvements of damage identification methods.

Basically, there are three classical damage identification approaches based on FE Model
Updating, namely: Optimal Matrix Update [10,11], Sensitivity-Based Matrix Update [12,13] and
Eigenstructure Assignment [14,15].

The adequacy and performance of using modal data for damage identification is still a
controversial issue [7], although this type of approach is very popular in the vibration engineering
community. The authors have their own experience on the subject which is reported in Ref. [13],
where a combination of dynamical residues involving modal data and a continuum damage model
[16] leading to an identification technique is successfully proposed for a number of situations. The
technical literature concerning damage identification is very extensive and it presents many other
approaches to the problem of damage identification. These approaches encompass, for instance,
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the time-domain based methods, which most of them have been developed from control theory
and process automation [7,8].

In the present work, a new method based on a continuum damage model as well as on the
sensitivity philosophy, which will be referred as Flexibility-based continuum damage identifica-
tion approach ðFCDIAÞ [17] is introduced. This method presents an internal variable that
continuously describes the damage experienced by a structure. The updating procedure is built on
a constrained minimization of an error measure defined as the square of the Frobenius norm of
the difference between the flexibility matrix obtained from a modal test and the analytical
flexibility matrix only related to the measured DOF of the structure [18,19]. This leads to a non-
linear optimization problem with constraints which is numerically solved through a Newton like
method. The connectivity and sparsity of the FE original model are naturally preserved. By
utilizing an error measure based upon the flexibility matrices, some difficulties commonly present
at a model updating are avoided. These difficulties include the necessity of a modal expansion
technique or a modal reduction to the dimension of the measured DOF and the selection of the
modes that will be used in the adjustment procedure, once an accurate estimate of the
experimental flexibility matrix may be obtained from a few of the lower frequency modes.

The proposed identification technique is grounded in a physically parameterized FE model [20]
which, in contrast to statistical analysis of time series [21], entails shortcomings like the
introduction of uncertainties associated with the discretization errors or modelling errors. The
motivation for employing such approach relies on its utility as mechanism, at least ideally, for
improving the knowledge of the physics of damage processes which, in turn, enlarges the
predictive ability concerning the remaining life of the structure and helps on the future modelling
and on the design optimization of similar systems. Furthermore, once the damage model is
improved and validated by a technique like the FCDIA, it could be used to supply training data
for on line autonomous health monitoring based on pattern recognition or on neural networks.

In order to shed some light on the use of the flexibility matrix in the proposed damage detection
method, the sensitivity of the modal data related to a single spring mass model of a structure is
analyzed. The system’s natural frequency is related to the stiffness k and mass m by wn ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
:

Considering that only the stiffness is affected by the damage, the natural frequency of the
damaged system is given by wD

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kb=m

p
; where b; an indicator of the structural defect that will

be detailed later, varies between 0 (totally damaged structure) and 1 (healthy structure).
Therefore, the relative sensitivity of the natural frequency to changes in the stiffness due to
damage reads as

d

db
wD

n

wn

� �
¼

1

ð2
ffiffiffi
b

p
Þ
:

On the other hand, the flexibility matrix G; which reduces to 1=k into this one degree of freedom
setting, presents the following sensitivity to damage:

d

db
gD

g

� �
¼

�1

b2
:

Sensitivity is a key point in any identification process, so, from that perspective, one could
conclude that the flexibility is a better damage indicator as its sensitivity to damage is significantly
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larger than the natural frequency’s one. That means that the former is more affected by the
presence of a defect, which can improve the conditions of detecting it.

The introduction of a continuum damage model makes it possible to follow the degradation
process from its very beginning till the onset of the nucleation of a macro crack evolved from the
microdefects represented through the damage field b: Therefore, assuming that damage behaves
isotropically in this initiation phase, which means that closure of micro cracks during compression
are not taken into account, the FCDIA is intended to identify flaws in their early stages. It is worth
mentioning that the damage modelling remains valid in the presence of a macro crack, but
FCDIA; which relies on the linear dynamic response of the structure, is no longer effective.

Damage identification fits in the broad category of inverse problems [7,22], which are normally
ill-posed. That means, for instance, that two or more different damage scenarios, or even none,
could correspond to the same measured structural response which provides the basis for the
sought identification. Inverse problems are also very difficult to be handled by numerical
algorithms, as they lead to ill-conditioned mathematical formulations. In order to circumvent
those difficulties in implementing the proposed damage identification technique a regularization
method [23,24] was adopted. This method, known as Thikonov regularization, introduces a new
functional to be minimized by adding to the former one a quadratic term involving a norm of the
sought solution. This method establishes a balance between conciliating the measured data with
the model and to retrieve a priori desired or known features of the identified parameters. Here, the
L2 norm of the damage parameter gradient is taken as the regularization term.

The remainder of the paper is organized as follows. Section 2 presents the theoretical aspects of
the proposed method, comprising a presentation of the basic involved quantities and the
principles of the continuum damage model to be used in the FCDIA: Section 3 presents the
numerical details of the Newton’s Method applied to the present problem. Finally, Section 4
presents some illustrative examples to assess the main characteristics of FCDIA; where some of
the simulations of the damage identification have been performed on a cantilever beam through a
virtual test simulator. This simulator was used in order to provide a more realistic character to the
simulations. A special attention is devoted to the role played by the regularization method
mentioned beforehand.

2. Theoretical background

This section is devoted to present the fundamentals of the model based damage identification
technique to be introduced . As structures are modelled as distributed parameter systems, the
first step on building such technique relies on obtaining a discrete version of the model. Here
the finite element method is adopted due to its recognized efficiency on dealing with structural
systems.

The stiffness and flexibility matrices K and G of an undamped n-DOF finite element model of a
structural system can be represented as functions of the system modal parameters as follows:

K ¼MUXUTM ¼M
Xn

i¼1

o2
i f

ðiÞ#fðiÞ

 !
M; ð1Þ
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G ¼ UX�1U ¼
Xn

i¼1

1

o2
i

fðiÞ#fðiÞ; ð2Þ

where M is the system mass matrix, U ¼ ½fð1Þ
yfðnÞ� is the mass-normalized mode shape matrix,

fðiÞ is the ith mass-normalized mode shape, X ¼ diagfo2
1yo2

ng is a diagonal matrix containing
the square of the system natural frequencies and # denotes the tensor product.

As one can see from Eq. (1), the higher the frequency, the greater the modal contribution to the
stiffness matrix. Hence, in order to obtain an accurate estimate of the experimental stiffness
matrix all the modal properties are required, or at least the ones associated with the higher
frequencies. However, in practice, due to experimental limitations, only a few of the lower modes
can be measured.

On the other hand, as one can see from Eq. (2), the higher the frequency, the smaller the modal
contribution to the flexibility matrix. Hence, a good estimate of the flexibility matrix can be
obtained from a few of the lower frequency modes. This characteristic of the flexibility matrix
leads to its fast convergence with increasing values of frequency. Although only a few of the lower
frequency mode shapes are necessary for a good estimate of the flexibility matrix, all of them must
be full-DOF mode shapes. Nevertheless, in practice, the number of DOF at which the mode
shapes are sampled is typically much smaller than the number of DOF of the FE model. As a
straightforward result, the experimental measured flexibility matrix GE is not computed for the
full-DOF set, but only for the instrumented ones, i.e.

GE ¼
XnE

i¼1

1

o2
i;E

fðiÞ
E #fðiÞ

E ; ð3Þ

where nEon is the number of modes computed from modal testing, the subscript E refers to an
experimental property and fðiÞ

E corresponds to the ith experimental mode shape.
It should be noticed from Eq. (3) that the number of experimental modes nE does not influence

the dimension of the experimental flexibility matrix GE ; which depends only on the number of
measured DOF : Hence, if only m DOF are measured in the modal testing, the mode shapes will
have dimension m 	 1; leading to an m 	 m experimental flexibility matrix. One should remark
that this m 	 m matrix does not have any relation to the inverse of any m 	 m partition of the
stiffness matrix.

Aiming at obtaining a relation between the experimental flexibility matrix GE and
an m 	 m matrix which contains information about stiffness properties of the structure, the
original stiffness matrix K should be reorganized according to the measured DOF : Partitioning
the n DOF of the system into the m measured DOF and the o omitted ones, the ith mode shape is
as follows:

fðiÞ ¼
fðiÞ

m

fðiÞ
o

( )
: ð4Þ

According to this partition of DOF ; the flexibility and stiffness matrices are partitioned as

G ¼
Gmm Gmo

GT
mo Goo

" #
; K ¼

Kmm Kmo

KT
mo Koo

" #
: ð5; 6Þ
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It can be shown [25] that the inverse of the analytical flexibility matrix related to the measured
DOF is equal to the Guyan-reduced (or statically condensed) system stiffness matrix %K [26] with
respect to the same set of DOF ; viz.

Gmm ¼ %K�1 ¼ ½Kmm � KmoK
�1
oo K

T
mo�

�1: ð7Þ

Hence, as it has been shown in Eq. (7), changes in the modal properties based on the flexibility
matrix, reflected by changes in the stiffness matrix, may be used, at least in principle, for damage
detection, location and extent determination.

2.1. Continuum damage model

Continuum damage mechanics describes in a unified fashion the two first stages of fracture.
Therefore it seems to be very convenient to link it to damage identification, which has motivated
the authors to explore this combination using two different approaches [8,13], other than the one
proposed here.

Along with classical variables that characterize the kinematics of a continuum medium
(displacements and velocities of material points labelled as x), an additional scalar variable
bA½0; 1� is introduced. This variable is related to the links among material points and can be
interpreted as a measure of the local cohesion state of the material. This field of cohesion states
describes the current state of damage within the mechanical system as it evolves in time and
possesses as extreme values b ¼ 0 and 1. Therefore, if at a certain time t; after a period of
evolution of the system, b ¼ 1; all the links and the initial material properties have been preserved.
On the other hand, if b ¼ 0 a local rupture is considered since all the links among material points
have been broken. The variable b is associated to the damage variable D; [27], by the following
relation: b ¼ 1� D: As the degradation is an irreversible phenomenon, the rate ’b must be negative
or equal to zero. Summarizing, D is a macroscopic field variable which represents microstructural
material damage in an average sense. It is treated as an internal variable that appears in the
constitutive relation, thus taking into account the degradation on the material’s mechanical
properties. A detailed presentation of the basic principles that govern the evolution of such kind
of continuum damage can be found in Refs. [16,28].

Due to the fact that the goal of the present work is damage identification, it is considered that
the damage does not evolve during the dynamic tests, i.e., ’b ¼ 0: In other words, it is supposed
that the level of internal forces in the structure during the experiment does not suffice to cause the
continuation of the damage process, implying that b is only a function of the spatial variable x.

The modelling considers that only the elastic terms contained in its basic equations are affected
by the damage field. Thus, the components of the stiffness matrix obtained by a spatial
discretization using the finite element model read as

KðbhÞij ¼
Z
O
bhðxÞ½D

TED�ijðxÞ dO; i; j ¼ 1;y; 3mh; ð8Þ

where ½D� denotes the standard discretized differential operator, ½E� is the matrix of the elastic
constitutive coefficients, mh is the number of nodal points related to the finite element
discretization and bh is the approximation for the damage field.
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As the damage is described exclusively by the variable b; which is continuously defined over the
whole elastic continuum body, the severity of the damage can be differentiated within the elements
of the structure. This method differs from the classical ones in which the damage is associated
with a classical parameter of the structure, such as Young modulus E; and the damage is not
supposed to affect the stiffness properties of adjacent elements. Therefore, the capability of the
present method to represent the damage of the structure is greatly supported by the discretization
bh of the damage field, which is not necessarily coincident with the one used for the displacement
field. As an example, the elemental stiffness matrix ½ke� of the C1 Euler–Bernouilli beam element
assuming the damage field interpolated using linear classical Lagrangian piecewise linear shape
functions reads as

8h3

EI
kðeÞ

¼

36bi þ 24bq þ 36bj 2hð13bi þ 6bq þ 5bjÞ �36bi � 24bq � 36bj 2hð5bi þ 6bq þ 13bjÞ

2hð13bi þ 6bq þ 5bjÞ h2ð19bi þ 10bq þ 3bjÞ �2hð13bi þ 6bq þ 5bjÞ h2ð7bi þ 2bq þ 7bjÞ

�36bi � 24bq � 36bj �2hð13bi þ 6bq þ 5bjÞ 36bi þ 24bq þ 36bj �2hð5bi þ 6bq þ 13bjÞ

2hð5bi þ 6bq þ 13bjÞ h2ð7bi þ 2bq þ 7bjÞ �2hð5bi þ 6bq þ 13bjÞ h2ð3bi þ 10bq þ 19bjÞ

2
66664

3
77775;

ð9Þ

where h is length of the element, I is the moment of inertia, A is the cross-sectional area, bi and bj

are the nodal cohesion parameters associated with the nodes i and j of the element of the FE mesh
of the displacement field, and bq is the nodal cohesion parameter associated to an intermediate
node placed in the middle of each element of the displacement’s mesh. The derivation of the above
equation is presented in Ref. [13].

The convenience of having two different discretizations for the damage and displacement fields
is demonstrated in the examples presented later on.

3. Identification problem

Aiming at the damage identification, it is assumed that the FE model is reliable and that
eventual discrepancies found between analytical and experimental information is mainly due to
the presence of damage in the structure. Key issues concerning uncertainties are not addressed
here. Uncertainty may be introduced in the identification process due to lack of information about
the involved parameters or to the unavoidable noise contained in the obtained data. The
aforementioned parameters are not only those related to materials characteristics but also those
linked to the discretization process. In order to handle that source of uncertainty, one could add a
previous step consisting of updating the FE model of the healthy structure to the proposed
methodology. The numerical results presented later will demonstrate that damage identification is
achieved by FCDIA even when noisy data is used.

The inverse damage identification problem is now posed as a finite dimensional optimization
formulation that reads as follows.
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Find B ¼ fb1;y; bnd
gT; a minimum of

JðBÞ ¼ 1
2
jjGmm �GE jj2F ¼ 1

2
½Gmm �GE � : ½Gmm �GE�

such that bjA½0; 1�; j ¼ 1;y; nd ; ð10Þ

where jj � jjF stands for the Frobenius norm and : denotes the matrix scalar product. Vector B
defines the discretized cohesion parameter field. When a Finite Element Method is adopted,
fb1;y;bnd

g are the nodal values of bhðxÞ: The above functional represents a least-square error
between measured and model responses of the damaged structure.

It is generally very difficult to obtain an analytical solution to the optimization problem
introduced above. Therefore, one has to resort to numerical algorithms that might present poor
performance when noisy data is used due to the ill-posedeness of the problem. This is partially
circumvented by adopting a regularization method in which a regularization term is added to the
error function, which leads to a new functional, viz.

JaðBÞ ¼ JðBÞ þ af ðBÞ; ð11Þ

where a and f ðBÞ are respectively a regularization factor and a regularization function. Here, f is
restricted to a discrete version of the b’s gradient L2 norm, which means, broadly speaking, that
one is seeking a regular solution. From a physical standpoint, it represents a penalization over
damage scenarios corresponding to sharp transitions between damaged and undamaged regions.
It is important to note that it does not eliminate such possibility, as it is needed for special cases
when damage is very localized. The choice of a was conducted by an heuristic approach by
observing the numerical results. This could be improved by using optimized schemes for this
choice [24]. Here, the regularization factor a has been chosen based on the stopping criterium
adopted for the numerical updating process, viz.

a ¼ a0 ¼
e0
10
; ð12Þ

where Joe0 is one of the criteria that must be satisfied to stop the updating process.
It is important to emphasize that once the nodal vector B has been determined, the damage

value at any point of the body can be reached by using the interpolation functions adopted in the
b discretization. Therefore, it is possible to obtain an evaluation of the damage state over the
whole elastic structure.

4. Numerical damage determination

This section presents the details of the numerical algorithm, based on the Newton Method, used
in the solution of the optimization problem introduced previously. The algorithm fits into the
category of sensitivity based methods [12,13,29].

The solution of the problem stated in Eq. (10) consists of the set of the most suitable nodal
cohesion parameters B ¼ fb1ybnd

gT satisfying the following optimality equations:

Fj ¼
@Ja

@bj

¼ 0 satisfying bjA½0; 1�; j ¼ 1;y; nd ; ð13Þ
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each equation consisting of the first derivative of the scalar function Ja with respect to the jth
cohesion parameter.

From Eqs. (11), (10) and (13), one gets

Fj ¼ �½GE �Gmm� :
@Gmm

@bj

þ aðRBÞj; ð14Þ

where the positive semi-definite matrix R is defined as

Rij ¼
Z
O
½DTD�ij dO

and the matrix D is the same one that appears in Eq. (8). The first derivative of the flexibility
matrix with respect to the cohesion parameters can be determined by differentiating the identity

%KGmm ¼ I; ð15Þ

where I is the m 	 m identity matrix. Performing a suitable manipulation in Eq. (15) yields

@Gmm

@bj

¼ �Gmm

@ %K

@bj

Gmm: ð16Þ

The non-linear system engendered by Eq. (13) is numerically solved by Newton’s Method. The
constraint of the cohesion parameters is imposed performing a simple projection, such that at the
rth iteration the approximation of the cohesion parameter vector reads as

BðrÞ ¼ SðBðr�1Þ þ DBðrÞÞ; ð17Þ

where the operator S is, essentially, a simple projection defined over each component of B
defined as

SðwÞ ¼ fw if wA½0; 1�; 1 if w > 1; 0 if wo0g; ð18Þ

where the increment DBðrÞ comes from the Newton’s iteration

Aðr�1ÞDBðrÞ ¼ �Fðr�1Þ; ð19Þ

where the matrix A represents the tangent matrix of the Newton’s Method, whose components are
defined as

Aij ¼
@Fi

@bj

þ aRij ð20Þ

and are obtained as

Aij ¼
@Gmm

@bj

:
@Gmm

@bi

� ½GE �Gmm� :
@2Gmm

@bi@bj

þ aRij: ð21Þ

One should notice that as the flexibility matrix is a function of the cohesion parameters, it must
be updated at each iteration. Therefore, after determining matrix A and the residual vector F for
the rth iteration, the increment DBðrÞ is given by

DBðrÞ ¼ ½Aðr�1Þ��1Fðr�1Þ: ð22Þ
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5. Illustrative examples

Here, the verification and assessment of the current damage identification approach involve an
‘‘analytically derived modal test structure’’. It is based on the two main tasks: the first one consists
of imposing some damage to a chosen test structure and performs a virtual modal experiment on
it, ignoring the knowledge of both the location and the magnitude of the imposed damage. The
second uses FCDIA to assess damage considering as entry the dynamic response of the damaged
fictitious test model.

The reliability evaluation of the proposed damage identification technique (FCDIA) is
performed on a cantilever bidimensional Euler–Bernouilli beam. This same structure was used in
other damage identification approaches based on the same continuum damage modelling [8,13],
that FCDIA is built on.

The 1 m cantilever beam comprises 20 bidimensional Euler–Bernouilli beam elements of length
h ¼ 0:05 m; which leads to a FE model containing 40 DOF (20 translational, 20 rotational). The
beam is depicted in Fig. 1 and its material properties have been chosen as reported in Table 1.
Within the frequency band of interest (0–450 Hz), the system contains six modes and the
following modal damping ratios were considered: z1 ¼ 0:058%; z2 ¼ 0:508%; z3 ¼ 0:309%; z4 ¼
0:378%; z5 ¼ 0:500% and z6 ¼ 0:400%:

In order to realistically simulate the corrupting effects of noise, filtering, digital sampling and
truncation of the modal spectrum, a virtual simulator was utilized. The simulator estimates the
frequency response function ðFRF Þ for each input-output pair through ensemble averaging. In
order to achieve a higher level of fidelity, the input signal is pre-filtered before the analog
conversion. The noise contaminated system response is the available one to be processed, and this
signal is filtered at 80% of the Nyquist frequency before digital sampling. As reported in Ref. [25],
this procedure furnishes realism to the FRF obtaining problem. The FRFs obtained from the
virtual simulator are used to derive impulse response functions required for the eigensystem
realization algorithm (ERA) [30], which in turn, provides a state-space equation of the structure.
The state-space equation derived from this realization is used further in the CBSI algorithm [31]
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Fig. 1. Cantilever beam (and its FE mesh) used to assess FCDIA.

Table 1

Material properties of the beam

Young modulus E 69 Gpa

Cross-sectional area A 1:82	 10�4 m2

Moment of inertia I 1:46	 10�9 m4

Specific mass r 6:8	 103 kg=m3

L.T. Stutz et al. / Journal of Sound and Vibration 279 (2005) 641–667650



which provides the required normal modal properties, namely, the normal mode-shapes at the
measured DOF and the natural frequencies.

For the required data acquisition, the excitation point will always be at the first sensor position
and the acquisition data parameters shown in Table 2 were adopted. The noise contaminated
system response is derived considering the following definition of signal to noise ratio ðSNRÞ:

SNR ¼ 10 log
s2

s

s2
n

� �
; ð23Þ

where s2
s and s2

n correspond to the variances of signals s and n respectively.
Although there had been six modes within the frequency band of interest, only the five first ones

were used for the updating processes. It helps to illustrate the fact that although not all the
available spectral information is required for the updating process, the set of not used information
is important in the validation of the damage identification result by inspecting the error measures
computed from the entire spectral information.

A number of examples is presented aiming at assessing the influence of noisy data, of reduced
measured DOF ; of the number of samples and averages used in the data acquisition and of the
regularization term in the results provided by FCDIA: This set of numerical examples is
summarized in Table 3. In the first six cases, the FE meshes of damage and displacement fields are
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Table 2

Data acquisition parameters

Sample frequency 1200 Hz

Number of samples 4096

Test band of interest 0–450 Hz

Excitation type sine chirp

Table 3

Simulation parameters

Case SNR Measured DOF Updated a Number

(dB) (nodes) parameters averages

1 90 2; 4; 6;y; 20 all a0 10

2 90 2; 6; 10; 14; 18 all a0 10

3 90 2; 6; 10; 14; 18 all see Fig. 10 10

4 40 2; 6; 10; 14; 18 all a0 10

5 40 2; 5; 8; 14; 21 2–9 0 10

6 20 2; 6; 10; 14; 18 all a0 100

7a 90 2; 4; 6;y; 20 all a0 10

8a 20 2; 6; 10; 14; 18 all a0 100

9a 20 2; 5; 8; 14; 21 all a0 100

10a 20 2; 5; 8; 14; 21 4–11 0 100

11a 20 2; 5; 8; 14; 21 5–11 0 100

aThe number of nodes associated to bh is the double of the one used in the displacement’s mesh.
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coincident, consisting of piece-wise linear functions. The damage is spread over the same three
elements for all the cases. In cases (7)–(11) there is no mesh coincidence and the damaged zone is
completely enclosed within a single element of the FE mesh of the displacement field.

In case (1), a linear damage distribution is imposed over elements between nodes 4 and 7 as
depicted in Fig. 1.

The damage is defined by its values at nodes 5 ð0:20 mÞ and 6 (0:25 mÞ; in which the variable D

was set to be 0.2 and 0.05, respectively, and null values were assumed at all other positions. The
vertical components of the first five modes were available at every other node. It has been
considered that the signal was polluted with noise such that the signal to noise ratio was SNR ¼
90 dB; which corresponds to a very accurate measure. All the 21 cohesion parameters were
allowed to be updated, i.e., no damage location step was first performed, which could indicate the
most likely damaged regions and, consequently, allowed only a small number of cohesion
parameters to be updated.

Three error measures are adopted in order to evaluate the performance of FCDIA. The relative
error between the experimental and the analytical natural frequencies Ef ; the amplitude
correlation coefficient ACC [32] and a normalized global time error measure.

The amplitude correlation coefficient ACC is defined as

ACCðoÞ ¼
2jHEðoÞ

HHðoÞj

HEðoÞ
HHEðoÞ þHðoÞHHðoÞ

; ð24Þ

whereHðoÞ is a vector comprised of all the available FRFs at the frequency o: The ACC is defined
between zero and unity, and it only becomes unity if the amplitudes of the FRFs coincide.

The normalized global time error GTE is defined as

GTEðtÞ ¼
Xns

j¼1

YE;jðtÞ � Ym;jðtÞ
jjYE;jðtÞjj

; ð25Þ

where YE;j and Ym;j correspond to the system response and to the model response respectively, at
the jth system sensor, regarding the same excitation and ns correspond to the number of available
sensors.

The result provided by FCDIA for case (1) is depicted in Fig. 2. It is clear from this figure that
the essence of the damage field was captured by FCDIA. However, it should be remarked that the
reliability of the provided result must be based on the error indicators computed from the
available data. The relative frequency error indicator Ef is depicted in Fig. 3 and it shows that all
the model natural frequencies, except the second one, have gotten closer to the experimental
natural frequencies. The ACC measure, depicted in Fig. 4, clearly shows a great improvement of
the FRFs, except at the first natural frequency. Nevertheless, it should be remarked that, within
this band, the poor FRFs curve fitting, due to precision errors in frequency associated to the
Discrete Fourier Transform may be responsible to make the ACC error measure almost invariant
within this band. The normalized global time-error GTE also shows a better agreement between
the response of the damaged structure and that of the updated model than the response of the
original one as can be noted in Fig. 5. Hence, all the error measures are positive with respect to the
response provided by the FCDIA, i.e., all of them show that damage identification has led to a
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better agreement between the updated model and the actual damaged structure, which implies
that the result can be considered satisfactory, a fact that agrees with Fig. 2.

The second situation (2) differs from the first one only in the number of sensors. Now only half
of the sensors are used, such that measured DOFs are the vertical ones corresponding to the nodes
2, 6, 10, 14 and 18. The result provided by FCDIA is shown in Fig. 6.

It is clear from Fig. 6 that the present result describes the damage field as well as it has been
described in the previous example, for the same algorithm stopping criteria. The error measures
associated with the result provided by FCDIA for case (2) are depicted in Figs. 7–9. As one can
see, when comparing the error measures for cases (1) and (2), it is really difficult to assure that, in
this situation, one solution is more consistent than the other one. This fact may be considered as
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Fig. 3. Relative frequency error indicator Ef for case (1). Black columns: initial; gray columns: final.
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Fig. 2. Result obtained by FCDIA for case (1). Thin line: correct; thick line: obtained.
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predictable as long as it is well known that, in several situations, the dynamic behavior of a
structure is slightly changed due to damage.

In the third case (3) the influence of the regularization term is considered. Damage identification
is performed for different values of the regularization coefficient a: Fig. 10 discloses the
importance of the regularization term in the updating process. There one should note that the
result provided by FCDIA when the regularization coefficient a is equal to zero indicates a second
possible solution for the present damage state of the structure. In this false scenario, three
damaged regions are indicated. One encompasses the imposed damage region and the other two
the region near the fixed and free ends of the beam, where damage does not really exist. This does
not sound strange, inasmuch as inverse problems have as a major drawback ill-posedness, which
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Fig. 5. Normalized global time error GTE for case (1). (a) GTEm: original model; (b) GTEup: updated model.
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Fig. 4. Amplitude Correlation Coefficient ACC for case (1). (a) ACCm: original model; (b) ACCup: updated model.
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might imply the existence of more than one solution [23]. When the regularization coefficient a is
made different from zero, all the identified damage regions are in agreement with the really
imposed damage. However, as the regularization term imposes a penalty in the gradient of the
damage field, the larger the regularization coefficient a the smaller the maximum damage
amplitude obtained by FCDIA, i.e., the identified damage tends to be smaller in amplitude and
greater in its support. That reinforces the need of seeking for an optimal regularization parameter
that grants a well-balanced inverse formulation, which leads to a physically meaningful and
numerically stable solution.

The fourth case (4) to be analyzed is carried out under the same conditions of case (2), except
for the signal to noise ratio SNR, which has been set equal to 40 dB: The result provided by
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Fig. 7. Relative frequency error indicator Ef for case (2). Black columns: initial; gray columns: final.
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Fig. 6. Result obtained by FCDIA for case (2). Thin line: correct; thick line: obtained.
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FCDIA is depicted in Fig. 11. As one can see, despite the presence of more noise in the data, the
result depicted in Fig. 11 is approximately the same as that of Fig. 6.

It is well known that after performing an experiment if one decides to do a different one, such as
keeping everything the same but the position of sensors, it can be really simple or almost not
practical. However, despite the difficulties inherent in this process, a second assessment of the
identified damage field can be obtained performing a new experiment, if it is possible. Therefore,
the damage identification result depicted in Fig. 11 will be assessed by a new experiment (5). The
damaged region pinpointed in Fig. 11 will be considered as the result of a damage location step,
which allows one to relocate the sensors to more suitable positions and to choose a small set of
cohesion parameters to be updated. Hence, the vertical DOFs of the nodes 2, 5, 8, 14 and 21 are
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Fig. 9. Normalized global time error GTE for case (2). (a) GTEm: original model; (b) GTEup: updated model.
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Fig. 8. Amplitude Correlation Coefficient ACC for case (2). (a) ACCm: original model; (b) ACCup: updated model.
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assumed to be measured, and only the cohesion parameters 2–9 were allowed to be updated. As
the solution was restricted to a certain region, the regularization coefficient a was set to zero, in
order to not penalize the gradient of furnished result. The authors have chosen to relocate the
sensors to positions which encompass the indicated damaged region.

The result provided by FCDIA for the case (5) is graphed in Fig. 12. When analyzing the set of
error measures associated with this case, depicted in Figs. 13–15, one may conclude that once
again the updating process has furnished a positive result, corroborating the result obtained from
the experiment in case (4). In reality, when comparing the errors measures, one may consider the
result presented in Fig. 12 more accurate than that of Fig. 11, which is mainly disclosed for the
relative frequency error Ef and the global time error GTE.
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The problem of damage identification in the presence of more severe noisy data is illustrated by
case (6). In this case, the signal to noise ratio SNR has been set equal to 20 dB; which means that
the rate of the variances of the signal and the noise attains 10%. In this case, for the data
acquisition parameters as in Table 3, the result provided by FCDIA is graphed in Fig. 16.

As the results obtained for cases (6), (2) and (4) are very close, so are the errors indicators
associated with these cases. Hence, all the error indicators, omitted here, are positive with respect
to the provided result.

As it has already been mentioned, a new FE mesh for the damage field is introduced. It is more
refined than that of the displacement field; more precisely, the new finite element mesh
parameter’s size is half of the displacement one. So, case (7) considers an imposed damage
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Fig. 13. Relative frequency error indicator Ef for case (5). Black columns: initial; gray columns: final.
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completely enclosed within the fourth element of the former mesh, and it is a linear distribution
defined by the cohesion parameter b ¼ 0:6 at a node in the middle of this element ð0:175 mÞ: It is
assumed that every other vertical DOF has been measured, that SNR ¼ 90 dB and that all the 42
cohesion parameters were allowed to be updated. The result obtained by FCDIA and its
associated error measures are shown in Fig. 17.

As it can be noted from Fig. 17, the result presented by FCDIA was capable of satisfactorily
indicating the damaged region, although its magnitude was not captured as well. However, the
error measures, Figs. 18–20, are all very positive with respect to the provided result.

Case (8) deals with the same damage region as previously except that the measured DOFs are
the vertical ones of the nodes 2, 6, 10, 14 and 18. The SNR for this case has been set equal to
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Fig. 15. Normalized global time error GTE for case (5). (a) GTEm: original model; (b) GTEup: updated model.
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20 dB: The result obtained by FCDIA is depicted in Fig. 21; As one can see from Fig. 21, the
damage identification result does not represent with fidelity the real damage present in
the structure. Nevertheless, all the error measures, Figs. 22–24, are positive with respect to the
provided result, which implies that the present result could be considered an improvement of
the finite element model.

Cases (9)–(11) consider, once again, the feasibility of carrying out a second experiment on the
same structure. As it has been done in case (5), the sensors were relocated to positions chosen
based on the result provided by Fig. 21; see Table 3. In case (9), all the cohesion parameters were
allowed to be updated. In cases (10) and (11), only a subset of the cohesion parameters pinpointed
in Fig. 21 were allowed to be updated and the regularization coefficient a was set equal to zero.
The results for cases (9) and (10) are depicted in Figs. 25 and 26, respectively.
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Fig. 21. Result obtained by FCDIA for case (8). Thin line: correct; thick line: obtained.
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Fig. 22. Relative frequency error indicator Ef for case (8). Black columns: initial; gray columns: final.
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Fig. 23. Amplitude Correlation Coefficient ACC for case (8). (a) ACCm: original model; (b) ACCup: updated model.
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Fig. 24. Normalized global time error GTE for case (8). (a) GTEm: original model; (b) GTEup: updated model.
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Fig. 26. Result provided by FCDIA for case (10). Thin line: correct; thick line: obtained.
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The result provided by FCDIA in case (9) is a satisfactory one, however the result in case (10)
represents an inconsistent one, inasmuch as it indicates a rupture of the beam at 0:1m;
corresponding to node 4 of the cohesion parameter mesh. Here once again one has an indication
of the applicability of the regularization factor inasmuch as it has been set equal to zero for
case (10).

As a last check, case (11) is almost equal to case (10) but only the cohesion parameters 5–11
were allowed to be updated. Although the present result can satisfactorily capture the amplitude
of the imposed damage, as disclosed in Fig. 27, two other close small damaged regions are
indicated. Nevertheless the results in cases (9) and (11) are distinct; the error measures associated
with them, not depicted here, are very close.

5.1. Preliminary assessment of the influence of parameter uncertainties

A preliminary assessment of the parameter uncertainties influence in FCDIA is now presented.
Several examples leading to similar conclusions were carried out considering Young modulus E

variability along the structure and submitted to the same conditions of case (7), summarized in
Table 3. The results depicted in Fig. 28 considers a 3% variation of the elastic parameter. They
reveal that, despite the presence of the parameter uncertainty, the damaged region was indicated
by FCDIA. As one can note from Fig. 29, the relative frequency error Ef shows the relative
improvement of the updated model. It is worthwhile noting that the result presented in Fig. 28
indicates, in some sense, the presence of parameter uncertainties since damage is considered as a
local phenomenon and a damage field distributed over the entire structure was obtained.

6. Concluding remarks

An approach for detecting damage based on a continuum damage model and using partial
experimental modal parameters has been presented. It is built on a constrained minimization of a

ARTICLE IN PRESS

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

D
A

M
A

G
E

x (m)

Fig. 27. Result provided by FCDIA for case (11). Thin line: correct; thick line: obtained.

L.T. Stutz et al. / Journal of Sound and Vibration 279 (2005) 641–667664



least-square residue involving model and experimental flexibility matrices. The approach has been
assessed using a number of different examples. The simulations have been performed on situations
involving typical real shortcomings, where the corrupting effects of noise, filtering, digital
sampling, truncation of the modal spectrum and the limited number of sensors have been
considered. The eigensystem realization algorithm (ERA) along with the common-based
normalized system identification (CBSI) were utilized to obtain the required natural frequencies
and mode-shapes.

The method has been shown to be efficient for estimating damage scenarios for the presented
situations. The validity of the provided results was based on a set of error measures. This set
of error measures is capable of qualifying whether a result is coherent or not, nevertheless, it
has not been shown to be a straightforward measure in comparing different results for the same
problem.
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The efficiency of the present approach depends upon the FE model accuracy, which, in practice,
is affected by the unavoidable presence of uncertainties. They exist due to inaccurate physical
parameters, non-ideal boundary conditions, localized non-linear behavior, discretization errors
and noise measurements. The FCDIA copes with those shortcomings by adopting a two stage
model updating. The first stage involves the updating of the undamaged structure, in order to
handle some of the mentioned sources of uncertainties. The authors have reported their own
experience involving the updating of composites structures in Refs. [33–35]. The second stage
consists of damage identification considering only noise measurements as uncertainties. Their
impact along with the variability of physical properties on FCDIA is preliminarily addressed in
the previous chapter. Further efforts in order to deal with uncertainties in the context of the
proposed method are now in progress.

Finally, it is important to reinforce that in the author’s experience a significative way of
improving the performance of any damage identification approach relies on the developing of
reliable error indicators, which could help in evaluating the quality of the estimated damage. They
can work on an adaptive strategy, like those traditionally used in the finite element technology,
verifying whether the damage identification was successful and, if it was not, indicating ways of
improving it. Remeshing and sensors relocation would be two possible actions in that context.
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